Министерство образования и науки РФ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

НОВОТРОИЦКИЙ ФИЛИАЛ

Кафедра металлургических технологий

Шаповалов А.Н., Большина Е.П.

РАСЧЕТ ШИХТЫ И МАТЕРИАЛЬНОГО БАЛАНСА АГЛОМЕРАЦИОННОГО ПРОЦЕССА

Методические указания для выполнения курсовой работы по дисциплине «Металлургические технологии, ч.1» для студентов направления 150400 «Металлургия» для очной формы обучения

Рецензенты:

Директор ФГАОУ ВПО НФ НИТУ МИСиС, к.т.н., доцент А.В. Заводяный

Заведующий кафедрой металлургии черных металлов ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г.Н. Носова», д.т.н., профессор В.А. Бигеев

Шаповалов А.Н., Большина Е.П. Расчет шихты и материального баланса агломерационного процесса: Методические указания для выполнения курсовой работы по дисциплине «Металлургические технологии, ч.1» для студентов направления 150400 «Металлургия». – Новотроицк: НФ НИТУ МИСиС, 2014 – 40 с.

Настоящие указания преследуют цель обучения студентов навыкам правильного решения вопросов, связанных с расчетами шихты и материального баланса агломерационного процесса.

Изложена сущность процесса агломерации и на примере показана последовательность расчетов шихты и материального баланса агломерационного процесса с целью определения химического состава и условий производства агломерата заданной основности.

Рекомендовано Методическим советом НФ НИТУ «МИСиС»

© Новотроицкий филиал ФГАОУ ВПО «Национальный исследовательский технологический университет «МИСиС», 2014

Содержание

Введение
1 Сущность процесса агломерации
2 Пример расчета шихты и материального баланса агломерационного
процесса
2.1 Исходные данные
2.2 Проверка суммы компонентов химического состава сырых
материалов на 100%
2.3 Определение состава рудной смеси
2.4 Определение расхода материалов на выплавку 1 т чугуна
2.5 Расчет агломерационной шихты, определение состава агломерата
2.5.1 Определение расхода коксика
2.5.2 Определение состава агломерата
2.5.3 Определение направленности процесса агломерации
2.5.4 Определение состава увлажненной шихты с возвратом на 100
кг сухой шихты без возврата
2.5.5 Уточнение состава агломерата
2.6 Расчеты горения в агломерационном процессе
2.6.1 Расчеты горения газа для зажигания шихты
2.6.2 Расчеты горения углерода и серы на 100 кг сухой шихты с
возвратом
2.6.3 Состав и количество сухих продуктов горения на 100 кг
сухой шихты с возвратом
2.6.4 Количество влаги, переходящей в продукты горения на 100 кг
сухой шихты с возвратом
2.7 Составление материального баланса агломерационного процесса
3 Определение расхода материалов на 100 кг годного агломерата
Список рекомендуемой литературы
Приложение А. Варианты заданий
Приложение Б. Химический состав компонентов агломерационных
ШИХТ

Введение

Расчет агломерационной шихты ведут с целью определения такого соотношения между ее компонентами, которое обеспечит получение агломерата заданного качества. В простейшем случае при заданном расходе руды и коксовой мелочи необходимо вычислить только расход известняка. Расчет сводится при этом к решению одного уравнения с одним неизвестным (уравнение баланса основности шихты). Зная содержание SiO₂ в руде до и после перешихтовки, легко вычислить и величину поправки к расходу известняка в шихту. На практике это случается при внезапном изменении состава спекаемых руд и концентратов.

В случае совместного определения расхода рудной смеси и известняка расход коксовой мелочи задается на основании экспериментальных данных или с учетом реальных расходов топлива на агломерационных фабриках при спекании однотипных руд. Расчет сводится к решению системы двух уравнений с двумя неизвестными (уравнения материального баланса спекания и баланса основности агломерата). Расход коксовой мелочи задается перед началом расчетов.

Полный расчет агломерационной шихты предусматривает совместное определение расходов рудной смеси, известняка и коксовой мелочи при решении трех уравнений с тремя неизвестными (уравнения материального баланса спекания, баланса основности агломерата, теплового баланса агломерации). Такой расчет производится при переходе на совершенно новую шихту, а также при проектировании металлургических заводов, когда при отсутствии экспериментальных данных о расходе топлива на спекание, необходимо производить полный расчет шихты с определением расхода коксовой мелочи из теплового баланса спекания.

Цель курсовой работы — научить студентов определять расходы компонентов шихты на всех стадиях металлургического производства; овладеть критериями оценки качества рудного и топливного сырья, методами расчета и выбора оптимальных параметров агломерационного процесса.

При выполнении курсовой работы формируются компетенции: самостоятельно приобретать знания, используя современные новые технологии; образовательные использовать фундаментальные уметь общеинженерные уметь осуществлять корректировать знания; И технологические процессы в металлургии.

В курсовой работе предстоит выполнить расчет состава аглошихты и составить материальный баланс процесса.

Варианты заданий приведены в Приложении А, составы компонентов агломерационной шихты – в Приложении Б.

Указания соответствуют государственному образовательному стандарту высшего профессионального образования по направлению 150400 «Металлургия».

Ниже приведен пример упрощенного расчета агломерационной шихты и материального баланса.

1 Сущность процесса агломерации

Агломерацией называется процесс окускования мелких руд и концентратов путем их расплавления и последующей кристаллизации расплава с образованием прочного пористого материала – агломерата.

Это позволяет не только окусковать пылеватые железорудные материалы, использование которых в доменной плавке исключается в связи с резким ухудшением газодинамических условий доменного процесса при загрузке в печь мелких материалов, но и улучшить металлургическую ценность железорудного сырья повышением его основности и уменьшением содержания в нем вредных примесей (главным образом, серы).

Агломерат получают в результате термической обработки шихты, которая представляет собой смесь железорудных концентратов крупностью 0-8 мм, возврата (оборотного продукта агломерационного производства) крупностью 0-6 (10)мм, коксика (коксовой мелочи) и флюса крупностью не более 3 мм, колошниковой пыли и окалины.

Основными составляющими шихты являются концентрат (60-70%) и возврат (25-35%). Флюс дают в шихту в количествах, обеспечивающих заданную основность агломерата. Коксик в шихте является основным источником тепла для проведения агломерационного процесса. Расход его в зависимости от минералогического типа руды, ее крупности, содержания в ней сульфидной или сульфатной серы колеблется от 4 до 10%. В связи с дефицитом коксика в качестве топлива при агломерации в настоящее время также используют каменные угли с относительно небольшим содержанием летучих веществ (не более 17%) и золы (не более 15%). Колошниковую пыль и окалину вводят в шихту при их наличии в количество 2-5%.

Перед спеканием шихту перемешивают и увлажняют. Перемешивание шихты осуществляют с целью усреднения ее состава, что является основным условием равномерного протекания процесса агломерации в отдельных микрообъемах спекаемого слоя и производства более однородного по составу и свойствам агломерата. Увлажняют шихту до оптимального предела (6-14%), обеспечивающего наилучшую газопроницаемость спекаемого слоя вследствие объединения мелких составляющих шихты под связующим воздействием обволакивающих их тонких пленок воды в сравнительно крупные агрегаты во время обработки шихты в окомкователе.

Перемешанную и увлажненную шихту загружают на колосниковую решетку спекательных тележек (паллет) агломерационной машины слоем высотой 170-700 мм. Спекательные тележки, плотно прижатые друг к другу, перемещают по рабочей ветви машины со стороны загрузки шихты на сторону выдачи агломерата.

В вакуум-камерах, над которыми движутся паллеты со спекаемым слоем шихты, при помощи эксгаустера создается разрежение до 9-12 кПа, благодаря чему воздух просасывается через шихту сверху вниз в вакуум-камеры.

Воспламенение коксика верхнего слоя шихты осуществляют горячими продуктами горения жидкого или газообразного топлива, сжигаемого в

зажигательном горне, расположенном над первыми вакуум-камерами. После выхода спекательной тележки из-под зажигательного горна горение коксика в нижележащих слоях шихты продолжается вследствие окисления углерода его кислородом, содержащимся в продуктах горения, которые поступают из вышележащих раскаленных слоев и нагревают нижележащие слои спекаемой шихты до температуры воспламенения коксика (около 700 °C). Слой шихты, в котором происходит горение топлива, называется зоной шихты, в котором происходит горение топлива, называется зоной горения. Высота зоны горения составляет 10-30 мм. Температура в ней достигает 1350-1550 °C. По мере выгорания углерода коксика зона горения перемещается в направлении прососа воздуха сверху вниз до колосниковой решетки.

Шихта в зоне горения в зависимости от количества выделяющегося тепла, развиваемой температуры и крупности компонентов может частично или полностью расплавляться. Нерасплавленные частицы обволакиваются жидкой фазой. Переход из жидкого состояния в твердое, т.е. образование агломерата сопровождается кристаллизацией собственно магнетита, гематита, вюстита, силикатов и ферритов кальция и других минералов при охлаждении потоком воздуха объемом спекаемого слоя после выгорания в них углерода. При росте кристаллов жидкая фаза оттесняется их гранями из мест ее первоначального образования, заполняет промежутки между кристаллами, различного рода пустоты и там при охлаждении цементируя микрообъемы спекаемой шихты, различные стадии физико-химических превращений, в прочный пористый сросток – агломерат.

Агломерационный процесс начинается с момента зажигания шихты (воспламенения коксика верхнего слоя шихты) и заканчивается с подходом зоны горения к колосникам спекательной тележки.

С целью устранения контактов колосников с зоной горения и уменьшения просыпания шихты чрез щели между ними в вакуум-камеры, а также облегчения сброса аглоспека с машины на колосники перед загрузкой на них шихты насыпают слой постели высотой 15-20 мм.

Для нее используют возврат крупностью 6-15 мм.

В спекаемом слое шихты спустя некоторое время после зажигания ее можно выделить ряд зон, частично перекрывающих друг друга и расположенных в следующей очередности сверху вниз:

- 1) готового агломерата;
- 2) горения топлива и образования расплава;
- 3) подогрева;
- 4) сушки (испарения гигроскопической влаги);
- 5) переувлажнения, в которой содержание влаги на 20-30% больше, чем в шихте, приготовленной к спеканию;
- 6) конденсации, в которой температура газового потока при соприкосновении с холодной шихтой понижается ниже точки росы (примерно 50-55 °C). Вследствие этого водяной пар, выносимый газовым потоком,

конденсируется в этих объемах шихты. Перемещаясь вниз, зона конденсации после себя оставляет зону переувлажнения;

7) шихты, не претерпевшей никаких, кроме усадки (уплотнения), изменений. Усадка шихты вызывается разностью давлений над поверхностью слоя и у колосников вследствие разрежения, создаваемого в вакуум-камерах.

Процессы, протекающие в этих зонах, и глубинах их завершенности зависят от крупности компонентов шихты, температуры, состава газовой фазы и скорости процесса спекания.

В зоне подогрева происходит разложение гидратов, карбонатов, восстановление или окисление окислов железа. Причем, начавшись в зоне подогрева, некоторые из этих процессов могут продолжаться в зоне горения и заканчиваться после прохождения зоны горения во время охлаждения агломерата.

Вышеназванные зоны после их возникновения перемещаются в спекаемом слое по направлению к колосникам со скоростью спекания и исчезают в обратной последовательности, в результате чего на спекательной тележке остается только агломерат.

Скорость спекания V (мм/мин) определяют по уравнению:

$$V = H/\tau , (1)$$

где Н – высота слоя шихты на спекательных тележках до ее зажигания, мм;

au – от начала зажигания шихты до окончания процесса спекания, мин.

Процесс агломерации заканчивают над предпоследней вакуум-камерой, и после прохождения спекательной тележкой последней вакуум-камеры аглоспек с нее сбрасывается в дробилку. После дробления и охлаждения аглоспека из нее грохочением выделяют возврат, постель и годный агломерат, отправляемый в доменный цех для выплавки чугуна.

2 Пример расчета шихты и материального баланса агломерационного процесса

2.1 Исходные данные

Агломерационная фабрика должна производить прочный легковосстановимый низкосернистый агломерат, состав, которого обеспечивает получение заданной марки чугуна без использования в доменной шихте сырого флюса.

Химический состав агломерата и его качество зависят от состава и соотношения отдельных материалов (компонентов) в агломерационной шихте.

С целью определения необходимого расхода материалов в агломерационную шихту выполняют ее расчет. Для того, чтобы рассчитать агломерационную шихту, надо знать химический состав используемых материалов, относительное содержание железорудных компонентов в рудной смеси и заданную основность агломерата.

Варианты заданий для расчета приведены в Приложении А, химические составы используемых материалов в Приложении Б, технический состав топлива (коксика), применяемого в аглошихте, а также химический состав золы коксика, окалины и металлодобавок, принимаются студентами самостоятельно.

Для расчета заданы химические составы используемых материалов (таблица 2.1) и технический состав кокса (таблица 2.2) при условии содержания в рудной смеси, %: руды -12,0; концентрата I - 45,0; концентрата I - 38,5; окалины -4,5 и расходе на выплавку 1000 кг чугуна влажного кокса 436 и металлодобавок 6 кг.

Таблица 2.1 - Химический состав сырых материалов, %

Компоненты	Железная	1	Концентрат		Метало-	Извест-	Зола
Компоненты		Концентрат	_	Окалина			
	руда	l	II		добавки	няк	кокса
W^{p^*}	2,30	2,30	4,30	3,00	-	1,10	-
Fe	55,70	64,27	59,30	69,97	90,50	0,39	3,59
Mn	0,10	1,02	0,25	0,26	0,40	-	-
P	0,042	0,183	0,75	0,065	0,030	0,068	0,240
S	0,026	0,041	0,021	0,044	0,030	0,048	-
SiO ₂	11,10	1,09	7,80	1,05	8,84	1,48	5066
Al_2O_3	2,90	0,82	5,34	0,50	-	0,49	28,56
CaO	1,60	0,62	0,59	0,68	-	51,46	9,05
MgO	1,40	6,31	0,49	0,23	-	3,46	7,60
FeO	13,40	23,78	19,77	27,25	-	-	-
Fe ₂ O ₃	-	65,38	62,74	69,69	-	0,56	-
SO_3	-	-	-	0,109	-	0,119	-
FeS ₂	-	0,077	0,039	-	-	-	-
MnO	-	1,32	0,32	0,33	-	-	-
P_2O_5	-	0,42	1,72	0,15	-	0,158	0,55
П.п.п.	0,35	0,20	1,22	-	-	42,26	
С	-	-	-	-	0,20	-	-

Таблица 2.2 – Технический состав кокса, %

W^p	A ^c	V ^c	S^{c}	С нел	$C^{c}_{oбщ}$	N_2^c	H_2^c
2,6	14	0,9	0,52	83,11	83,42	0,83	0,75

Расчет выполняется в следующей последовательности:

- 1) проверка суммы компонентов химического состава сырых материалов на 100%;
- 2) оценка сырых материалов по содержанию в них фосфора и марганца с целью выбора марки и состава чугуна;
- 3) определение расхода рудных материалов и флюсов на выплавку 1000 кг чугуна;
 - 4) расчет агломерационной шихты и определение состава агломерата;
 - 5) составление материального баланса агломерационного процесса.

2.2 Проверка суммы компонентов химического состава сырых материалов на 100%

В химических составах материалов часто указывается содержание некоторых элементов в свободном состоянии. Поэтому, если сложить цифры, отражающие содержание всех компонентов химического состава того или иного материала, сумма их будет меньше 100%.

Сводимость же материального баланса агломерационного и доменного процессов возможна лишь при равенстве суммы всех составляющих химического состава 100%.

При пересчете химического состава нужно иметь в виду, что в железной руде железо находится в виде соединений FeO, Fe₂O₃ и FeS₂, марганец MnO, фосфор P_2O_5 , сера FeS₂ и SO₃, которые могут быть связаны с другими компонентами химического состава (см. таблицу 2.1.). При отсутствии данных о соединениях серы в материалах условно принимается, что вся сера в магнетитовых и полумартитовых рудах связана в пирит FeS₂, в других типах железных руд, известняках, окалине и колошниковой пыли в серный ангидрит SO_3 .

В потери при прокаливании (п.п.п.) в бурых железняках в основном входит гидратная влага, в сидеритах и известняках — двуокись углерода CO_2 . В остальных материалах к потерям при прокаливании условно относится гидратная влага.

Прежде чем производить проверку суммы составляющих химического состава железной руды или концентрата, необходимо установить их минералогический тип исходя из содержания в них железа, закиси железа и потерь при прокаливании.

Определить тип руды можно, пользуясь данными таблицы 2.3.

		ALLE MODELLILLORO MILLIO	MODORITIONIZARA MILITA V/.
\mathbf{I}	. имический состав	110//1 1123/11/19401101 МИНЕ	114 II OI M 4 E C R C II C I I M 114 / / /
I u O I I I u	MINIMI ICCRIMI COCIAD	DYA DUSTIN INOI O MINING	ралогического типа, %

Тип руды	Fe	FeO	П.п.п.
Красный железняк	53-60	До 2,5	До 5,0
Магнитный железняк	40-65	15-28	До 5,0
Бурый железняк	35-50	До 2,0	10-12
Сидерит	28-35	Более 28	30-33

Минералогический тип руды, получившейся в результате окисления магнетита, устанавливается по отношению в ней общего содержания железа к содержанию двухвалентного железа $Fe_{\text{общ}}$: Fe^{2+} , принимаемому по классификации академика М.А. Павлова в следующих пределах [5]:

- магнетит < 3.5;
- полумартит 3,5-7,0;
- мартит > 7,0.

Пересчет на 100% состава железной руды выполняется в следующей последовательности.

Оценивается минералогический тип исходного состава руды, %: Fe - 55,70; Mn - 0,10; P - 0,042; S - 0,026; SiO₂ - 11,1; Al₂O₃ - 2,9; CaO - 1,6; MgO - 1,4; FeO - 13,4; п.п.п. - 0,35.

Руда по типу относится к окисленным магнитным железнякам (это определяется, исходя из содержания в руде FeO). Так как отношение $Fe_{oбщ}$: Fe^{2^+} в руде больше 3,5, но меньше 7,0 ($Fe_{oбщ}$: Fe^{2^+} = 55,70 : 13,4 = 4,16), то ее можно отнести к полумартитовым. Следовательно, сера в руде находится в виде пирита FeS_2 .

1) Определение содержания пирита в руде.

Количество железа в руде, связанного с серой определяется из уравнения:

$$\% Fe_S = \% S_p \cdot \frac{M_{Fe}}{M_S}, \tag{2}$$

где $%S_p$ – сера руды, %;

М_{Fe} – молекулярная масса атомов железа в пирите;

 M_s – молекулярная масса атомов серы в пирите.

Отсюда: %
$$Fe_S = 0.026 \cdot \frac{56}{64} = 0.02$$
%.

По известному содержанию серы определяется количество пирита ${\rm FeS_2}$ в руде:

$$\% \text{FeS}_2 = \% \text{Fe}_S \cdot \frac{M_{\text{FeS}_2}}{M_{\text{Fe}}}, \tag{3}$$

где M_{FeS2} – молекулярная масса FeS_2 .

Тогда по уравнению (1.3): %FeS₂ =
$$0.02 \cdot \frac{120}{56} = 0.04$$
%.

2) Определение содержания Fe₂O₃ в руде.

Количество железа, связанного в закись железа FeO определяется по уравнению:

$$\% Fe_{FeO} = \% FeO_p \cdot \frac{M_{Fe}}{M_{FeO}}, \tag{4}$$

где % ${\sf FeO_p}$ – содержание FeO в руде, %;

 M_{FeO} – атомная масса FeO.

Тогда %
$$Fe_{FeO} = 13.4 \cdot \frac{56}{72} = 10.42\%$$
.

Количество железа, находящегося в Fe_2O_3 , определяется по разности между общим его содержанием в руде и связанным в FeS_2 и FeO:

 $%Fe_{Fe_2O_3} = 55,70 - 0,02 - 10,42 = 45,26\%.$

Содержание Fe₂O₃ в руде находится из уравнения:

$$\% \text{Fe}_2 \text{O}_3 = \% \text{Fe}_{\text{Fe}_2 \text{O}_3} \cdot \frac{\text{M}_{\text{Fe}_2 \text{O}_3}}{\text{M}_{\text{Fe}}},$$
 (5)

где $M_{Fe_2O_3}$ – молекулярная масса Fe_2O_3 ;

 M_{Fe} – молекулярная масса атомов железа в Fe_2O_3 .

Отсюда в руде содержится Fe_2O_3 : $45,26 \cdot \frac{160}{112} = 64,66\%$.

3) Определяется содержание закиси марганца MnO в руде:

$$\%MnO_p = \%Mn_p \cdot \frac{M_{MnO}}{M_{Mn}}, \tag{6}$$

где %Mn_p – содержание марганца в руде, %;

 M_{MnO} – молекулярная масса MnO;

 M_{Mn} – молекулярная масса атомов марганца в MnO.

Тогда %MnO_p =
$$0.1 \cdot \frac{71}{55} = 0.13$$
%.

4) Определяется количество пентаоксида фосфора в руде Р₂О₅:

$$\%P_2O_{5p} = \%P_p \cdot \frac{M_{P_2O_5}}{M_P}, \tag{7}$$

где %Рр - количество фосфора в руде, %;

 ${\rm M}_{{\rm P}_2{\rm O}_5}$ – молекулярная масса ${\rm P}_2{\rm O}_5$;

 M_p – молекулярная масса атомов фосфора в P_2O_5 .

Тогда %
$$P_2O_{5p} = 0.042 \cdot \frac{142}{62} = 0.096$$
%.

5) Пересчет химического состава руды на 100%.

В результате проделанных выше расчетов химический состав руды можно записать следующим образом, %: $Fe_2O_3-64,66$; FeO-13,7; $FeS_2-0,04$; MnO-0,13; $P_2O_5-0,096$; $SiO_2-11,1$; $Al_2O_3-2,90$; CaO-1,60; MgO-1,40; $\pi.\pi.\pi-0,35$.

При сложении содержания всех компонентов химического состава руды, получается $\Sigma X_p = 95,98\%$.

Неравенство суммы компонентов 100% может быть следствием неточности проведения химического анализа или ошибочно принятого распределения элементов по соединениям.

Пересчет состава руды на 100% проводится по каждому веществу по уравнению:

$$\%X_{100} = \frac{\%X_p}{\Sigma X_p},\tag{8}$$

где %Х – содержание компонента Х.

Тогда, пересчитанное содержание, например Fe_2O_3 , в руде будет: $\frac{64,66}{95,98} \cdot 100 = 67,37\%$. Аналогично проводится пересчет на 100% других

компонентов:

FeO:
$$\frac{13.7}{95.98} \cdot 100 = 14.27\%$$
, FeS₂: $\frac{0.04}{95.98} \cdot 100 = 0.04\%$, MnO: $\frac{0.13}{95.98} \cdot 100 = 0.14\%$, P₂O₅: $\frac{0.096}{95.98} \cdot 100 = 0.100\%$, SiO₂: $\frac{11.1}{95.98} \cdot 100 = 11.56\%$, Al₂O₃: $\frac{2.90}{95.98} \cdot 100 = 3.02\%$, CaO: $\frac{1.60}{95.98} \cdot 100 = 1.67\%$, MgO: $\frac{1.40}{95.98} \cdot 100 = 1.46\%$, III.II.: $\frac{0.35}{95.98} \cdot 100 = 0.36\%$, Fe: $67.37\frac{112}{160} + 14.27\frac{56}{72} + 0.04\frac{56}{120} = 58.26\%$, Mn: $0.14 \cdot \frac{55}{71} = 0.11\%$, P: $0.10 \cdot \frac{62}{142} = 0.044\%$, S: $0.04 \cdot \frac{64}{120} = 0.021\%$.

Аналогично проводится пересчет состава на 100% других компонентов агломерационной шихты в соответствии с заданием. Расчеты должны выполняться по всем компонентам, кроме фосфора и серы с точностью до 0,01%. Фосфор и сера рассчитываются с точностью до 0,001%.

Пересчитанные на 100% составы всех материалов вписываются в таблицу 2.4.

Таблица 2.4 - Химический состав сырых материалов, % (пересчитанный на 100%)

Компоненты	Железная	Концентрат	Концентрат	Окалина	Метало-	Извест-	Зола
	руда	I	II		добавки	няк	кокса
W^{p^*}	2,30	2,30	4,30	3,00	-	1,10	-
Fe	58,26**	64,27**	59,30**	69,97**	90,50	0,39**	3,59
Mn	0,11**	1,02**	0,25**	0,26**	0,40	-	-
P	0,044**	0,183**	0,75**	0,065**	0,030	0,068**	0,240**
S	0,021**	0,041**	0,021**	0,044**	0,030	0,048**	-
SiO ₂	11,56	1,09	7,80	1,05	8,84	1,48	5066
Al ₂ O ₃	3,02	0,82	5,34	0,50	-	0,49	28,56
CaO	1,67	0,62	0,59	0,68	-	51,46	9,05
MgO	1,46	6,31	0,49	0,23	-	3,46	7,60
FeO	14,27	23,78	19,77	27,25	-	-	-
Fe ₂ O ₃	67,37	65,38	62,74	69,69	-	0,56	-
SO ₃	-	-	-	0,109	-	0,119	-
FeS ₂	0,04	0,077	0,039	-	-	-	-
MnO	0,14	1,32	0,32	0,33	-	-	-
P_2O_5	0,10	0,42	1,72	0,15	-	0,158	0,55
П.п.п.	0,36	0,20	1,22	-	-	42,26	-
С	-	-	-	-	0,20	-	-
Сумма	100	100	100	100	100	100	100

Примечания:

2.3 Определение состава рудной смеси

Исходя из заданных относительных количеств материалов в рудной смеси, определяется ее средневзвешенный состав.

Средневзвешенное содержание в рудной смеси, например FeO, определяется по уравнению:

$$FeO = 0.01 \cdot (FeO_p \cdot P + FeO_{k1} \cdot K1 + FeO_{k2} \cdot K2 + FeO_o \cdot O), \tag{9}$$

где P, K1, K2, O – количество в рудной смеси руды, концентрата 1, концентрата 2 и окалины, соответственно, %;

 FeO_p , FeO_{k1} , FeO_{k2} , FeO_o – содержание FeO в руде, концентрате 1, концентрате 2 и окалине, соответственно, %.

Тогда:

$$FeO = 0.01 \cdot (14.27 \cdot 12.0 + 23.78 \cdot 45.0 + 19.77 \cdot 38.50 + 27.25 \cdot 4.5) = 21.25\%.$$

Аналогичным образом рассчитываются средневзвешенные содержания в рудной смеси и других компонентов. Для рассматриваемого примера средневзвешенный состав рудной смеси приведен в таблице 2.5.

^{1 *}CBepx 100%;

^{2 **} При подсчете суммы исключается из числа слагаемых, так как учитывается в виде соединения

Таблица 2.5 - Средневзвешенный состав рудной смеси, %:

				1 2				
W^p	Fe	Mn	P	S	SiO ₂	Al_2O_3	CaO	MgO
3,1	61,82	0,580	0,379	0,031	4,93	2,81	0,74	3,22
FeO	Fe ₂ O ₃	FeS_2	SO_3	MnO	P_2O_5	C	П.п.п.	\sum
21,25	64,79	0,054	0,005	0,75	0,87	0,00	0,6	100,00

2.4 Определение расхода материалов на выплавку 1 т чугуна

Для определения расхода материалов составляют и решают систему уравнений материального баланса, число которых равно количеству подлежащих выполнению условий. Этими условиями могут быть массы железа и марганца в чугуне, основность шлака и содержание в нем MgO и др. Количество условий зависит от соотношения между компонентами агломерационной шихты, которое обеспечит получение агломерата заданного качества

В рассматриваемом примере удобно воспользоваться балансовыми уравнениями по железу и основности доменного шлака.

В этом случае уравнения будут иметь следующий вид:

а) по железу

$$\frac{\text{Fe}_{\text{p}}}{100} \cdot \text{P} + \frac{\text{Fe}_{\text{M}}}{100} \cdot \text{M} + \text{Fe}_{\text{M3B}} = \frac{\text{Fe}_{\text{r}}}{100 \cdot \eta_{\text{Fe}}} \cdot 1000; \tag{10}$$

б) по основности шлака CaO : SiO₂

$$\frac{\operatorname{CaO}_{p} \cdot P + \operatorname{CaO}_{\mathsf{M}} \cdot \mathsf{M} + \operatorname{CaO}_{\mathsf{M3B}} \cdot 100}{\operatorname{SiO}_{2p} \cdot P + \operatorname{SiO}_{2\mathsf{M}} \cdot \mathsf{M} + (\operatorname{SiO}_{2\mathsf{M3B}} - \operatorname{SiO}_{2r}) \cdot 100} = B \tag{11}$$

где В - основность шлака по отношению CaO : SiO₂;

P, И — расходы соответственно рудной смеси и известняка, кг; (символ элемента или окисла перед расходом материала — содержание данного элемента или окисла в материале, %);

Fe_r - принятое содержание железа в чугуне, %;

 $Fe_{\text{изв}}$ - масса железа, вносимого материалами, расход которых известен (зола кокса, металлодобавки и т.д.), кг;

 η_{Fe} - коэффициент использования железа, доли ед.;

 $SiO_{2изв}$, $CaO_{изв}$ - массы соответственно кремнезема и окиси кальция, вносимые материалами, расход которых известен, кг;

 SiO_{2r} - масса кремнезема, расходуемая на восстановление кремния в чугуне, кг.

1) Для составления баланса по железу необходимо вычислить количество железа, вносимого в чугун сырыми материалами, расход которых известен, и задаться ориентировочным содержанием железа в чугуне.

Определяется количество золы (3), вносимое коксом на 1 т чугуна:

$$3 = K_{W} \cdot \frac{(100 - W^{p})}{100} \cdot \frac{A^{c}}{100}, \tag{11}$$

где K_w – расход влажного кокса, кг (задано по условию);

 W^p – содержание влаги в коксе, % (см. таблицу 2.2);

 A^{c} – содержание золы в коксе, %.

Тогда,
$$3 = 436 \cdot \frac{(100 - 2.6)}{100} \cdot \frac{14.00}{100} = 59.45 \text{ кг.}$$

С золой кокса поступает железа $59,45 \cdot \frac{3,59}{100} = 2,13$ кг,

где 3,59 – содержание железа в золе кокса, %.

Металлодобавки вносят железа $6 \cdot \frac{90,5}{100} = 5,43$ кг,

где 6 – расход металлодобавок на 1000 кг чугуна, кг (задано по условию);

90,5 – содержание железа в металлодобавках, %.

Всего зола кокса и металлодобавки вносят железа: 2,13 + 5,43 = 7,56 кг.

Принимается содержание железа в чугуне равное 93%.

Коэффициент использования железа η_{Fe} при выплавке передельных чугунов находится в пределах 0,9990–0,9920. Принимается $\eta_{Fe}=0,998,$ т.е. допускается потеря железа со шлаком в количестве 0,002 от содержания его в шихте.

В итоге уравнение по железу будет иметь вид:

$$\frac{61,82}{100} \cdot P + \frac{0,39}{100} \cdot M + 7,56 = \frac{93}{100 \cdot 0,998} \cdot 1000 = 931,86.$$
 (12)

2) При составлении балансового уравнения по основности шлака необходимо задаться величиной основности шлака.

Основность шлака определяет одно из главных его свойств – обессеривающую способность, от которой зависит чистота чугуна по содержанию в нем серы.

Основность шлака ориентировочно принимают по содержанию серы в коксе, так как он вносит наибольшее количество серы в доменную плавку. При содержании серы в коксе 0,4-0,65 и 1,7-1,8% основность шлака по отношению $CaO: SiO_2$ можно принимать в пределах соответственно 0,85-1,15 и 1,17-1,30.

По содержанию серы в коксе 0.52% (см. таблицу 2.2) принимается основность шлака $CaO: SiO_2 = 1.10$.

Определяются предварительные количества кремнезема и окиси кальция, вносимые золой кокса и металлодобавками, а также количество кремнезема, расходуемое на восстановление кремния чугуна.

Зола кокса и металлодобавки вносят, кг:

а) кремнезема
$$SiO_{2и3B} = \frac{50,66}{100} \cdot 59,45 + \frac{8,84}{100} \cdot 6 = 30,65 \text{ кг};$$

б) оксида кальция
$$CaO_{\text{изв}} = \frac{9,05}{100} \cdot 59,45 = 5,38 \text{ кг},$$

где 59,45 и 6 – массы соответственно золы кокса (см. выше) и металлодобавок (по заданию).

На восстановление кремния чугуна расходуется кремнезема:

$$SiO_{2r} = \frac{[Si]_{q}}{100} \cdot \frac{M_{SiO_{2}}}{M_{Si}} \cdot 1000,$$
 (13)

где Si_ч - содержание кремния в чугуне (принимается самостоятельно), %;

 M_{SiO2} - атомная масса SiO_2 , кг;

 M_{Si} - атомная масса кремния, кг.

Тогда
$$SiO_{2r} = \frac{2,3}{100} \cdot \frac{60}{28} 1000 = 49,29$$
 кг.

В этом случае балансовое уравнение по основности шлака (11) будет иметь вид:

$$\frac{0.74 \cdot P + 51.46 \cdot M + 5.38 \cdot 100}{4.93 \cdot P + 1.48 \cdot M + (30.65 - 49.29) \cdot 100} = 1.10.$$
(14)

Решение системы балансовых уравнений по железу и основности шлака дает расход на 1 т чугуна:

- рудной смеси Р = 1488,44 кг,
- известняка И = 87,85 кг.

Проверяется правильность решения системы уравнений подстановкой в них найденных значений Р, И:

а) по железу

$$\frac{61,82}{100} \cdot 1488,44 + \frac{0,39}{100} \cdot 87,85 + 7,56 = 929,756$$
 Kg.

Так как полученное значение отличается от результата уравнения (12), то необходимо определить погрешность вычисления:

$$\frac{931,86 - 929,756}{931,86} \cdot 100 = 0,23 \%.$$

Погрешность находится в допустимых пределах (0,5%), что свидетельствует о правильности выполненных расчетов;

б) по основности шлака

$$\frac{0.74 \cdot 1488,44 + 51,46 \cdot 87,85 + 5,38 \cdot 100}{4,93 \cdot 1488,44 + 1,48 \cdot 87,85 + (-18,640) \cdot 100} = 1,099.$$

По аналогии проводится определение погрешности вычисления в сравнении с уравнением (14):

$$\frac{1,10-1,099}{1,10} \cdot 100 = 0,09 \%.$$

Таким образом, расход рудной смеси и известняка на выплавку 1 т чугуна определен правильно (с учетом погрешности вычислений).

2.5 Расчет агломерационной шихты, определение состава агломерата

Современная практика производства чугуна идет в направлении уменьшения числа компонентов доменной шихты, что обеспечивается широким развитием агломерации железорудных концентратов и различного рода добавок, используемых в доменной плавке.

Предполагается вести доменную плавку на шихте только из агломерата и кокса; поэтому вся ранее рассчитанная рудная смесь и известняк подвергаются агломерации.

Кроме этих материалов в агломерационную шихту войдут:

- коксик, как основной источник тепла в агломерационном процессе,
- вода, как средство окомкования шихты и получения ее хорошей газопроницаемости.
- небольшое дополнительное количество флюса для ошлакования золы коксика.

Содержание в аглошихте углерода и ее влажность задается, исходя из практических данных в зависимости от минералогического типа спекаемых руд. Углерода в сухой шихте содержится при спекании магнетитовых руд 3,5-4,5, гематитовых 4,5-5,0, бурых железняков 6,0-8,0%.

Магнетитовые руды агломерируются при меньшем расходе твердого топлива, так как при их спекании выделяется дополнительное тепло за счет окисления серы и повышения степени окисленности железа.

Оптимальная влажность шихты составляет при спекании магнетитовых руд 6-8, гематитовых 8-10, бурых железняков 14-18%.

2.5.1 Определение расхода коксика

Вследствие того, что в рассматриваемом примере спекаются магнетитовые концентраты, принимается: содержание углерода в сухой шихте 3,5%, влажность шихты 7,0%.

Ранее был определен расход известняка (87,85 кг) на ошлакование пустой породы рудной смеси и золы кокса доменной шихты. Этот же флюс будет использоваться для ошлакования пустой породы золы коксика, применяемого в качестве топлива при агломерации.

Состав золы коксика принимается таким же, как у кокса доменной шихты (см. таблицу 2.1). Содержание золы в коксике на 1-2% больше содержания ее в металлургическом коксе. Количество углерода в коксике уменьшается в соответствии с увеличением в нем золы.

Принимается содержание золы в коксике 15%. Отсюда нелетучего углерода в коксике будет: 83,11-(15,00-14,00)=82,11% (см. таблицу 2.2).

Влажность коксика составляет 10-25%. Принимается содержание влаги в коксике 18%.

Расчет агломерационной шихты без влаги и возврата ведется, исходя из 100 кг сухой рудной смеси.

На 1488,44 кг рудной смеси в доменной плавке расходуется, как было определено ранее, 87,85 кг флюса.

Отсюда в аглошихте на 100 кг рудной смеси расход флюса составит:

$$\Phi = \frac{H}{P} \cdot 100 = \frac{87,85}{1488,44} \cdot 100 = 5,9 \text{ Kg}.$$

Для офлюсования золы коксика агломерационного процесса требуется ввести дополнительное количество флюса.

Флюсующая способность флюса Φ_{ϕ} (%) определяется по уравнению:

$$\Phi_{\phi} = \text{CaO}_{\phi} - \text{B SiO}_{2\phi}, \tag{15}$$

где CaO_{ϕ} и SiO_2 – содержание соответственно CaO и SiO_2 во флюсе, %;

В – основность шлака CaO / SiO₂, доли ед.

Подставляя в уравнение соответствующие значения, получается:

$$\Phi_{\phi} = 51,46 - 1,10 \cdot 1,48 = 49,83\%.$$

Количество флюса Φ_{κ} (кг), потребное на офлюсование золы 1 кг коксика, рассчитывается по уравнению:

$$\Phi_{K} = \frac{A}{100} \cdot \frac{\text{SiO}_{2} \cdot \text{B} - \text{CaO}}{\Phi_{\phi}}$$
 (16)

где А – содержание золы в коксике, %;

SiO₂, CaO – содержание соответственно SiO₂ и CaO в золе коксика, %;

В – основность шлака, доли ед.

На офлюсование золы 1 кг коксика требуется флюса:

$$\Phi_{K} = \frac{15}{100} \cdot \frac{50,66 \cdot 1,10 - 9,05}{49,83} = 0,149 \text{ Kg}.$$

Расход коксика К (кг) определяется по уравнению:

$$K = \frac{C_{III} \cdot (P + \Phi) - C_P \cdot P}{C_K - C_{III} \cdot (1 + \Phi_K)},$$
(17)

где C_{κ} , $C_{\text{ш}}$ и C_{P} – содержание углерода соответственно в коксике, аглошихте и рудной смеси (за счет колошниковой пыли), %;

 Φ_{κ} – количество флюса, потребное на ошлакование золы 1 кг коксика, кг;

Р, Ф – расход в шихту соответственно рудной смеси и флюса, кг;

Подставляя в уравнение значения соответствующих величин, получается:

$$K = \frac{3.5 \cdot (100 + 5.9) - 0}{82.11 - 3.5 \cdot (1 + 0.149)} = 4.75 \text{ Kg}.$$

На офлюсование золы коксика потребуется дополнительное количество флюса:

$$\Phi_{\kappa} \cdot K = 0.149 \cdot 4.75 = 0.71 \text{ K}\Gamma.$$

Общий расход флюса на офлюсование пустой породы рудной смеси и золы составит 5.9+0.71=6.61 кг.

На основе результатов выполненных расчетов определяется состав сухой шихты (таблица 2.6).

таолица 2.0 - Состав сухои ш	ИХІЫ				
Vomionoutri	Содержание				
Компоненты	КГ	%			
Рудная смесь	100	90,00			
Флюс	6,61	5,77			
Коксик	4,75	4,27			
Итого	111 36	100			

Таблица 2.6 - Состав сухой шихты

Правильность расчета коксика в шихту проверяется по процентному содержанию углерода в шихте, которое должно соответствовать принятому - 3,5%. Содержание углерода в сухой шихте $C_{\rm m}$ (%) определяется по уравнению:

$$C_{\text{III}} = (P_{\text{III}}C_{\text{p}} + K_{\text{III}}C_{\text{k}})/100,$$
 (18)

где $P_{\text{ш}}$ и P_{κ} - содержание в сухой шихте (см. таблицу 2.6) соответственно рудной смеси и коксика, %.

Содержание углерода в шихте составит:

$$C_{III} = (4,27 \cdot 82,11)/100 = 3,5\%.$$

Отсюда следует, что расход коксика в шихту определен правильно.

2.5.2 Определение состава агломерата

Для определения химического состава агломерата составляется балансовая таблица 2.7 на 100 кг сухой шихты, при составлении которой необходимо иметь в виду, что сумма всех компонентов химического состава материала должна быть равна его сухой массе (отклонения допускаются в пределах $\pm 0.1\%$).

Составление таблицы 2.7:

Графа «Переходит в агломерат, кг» заполняется на основе данных графы «Всего шихтой вносится, кг». При этом учитываются некоторые практические данные производству агломерата.

Работа агломерационных фабрик показывает, что в агломерат переходит 0,5-5% углерода и 3-10% (при спекании сернистых магнетитовых руд) или 30-50% (при спекании малосернистых руд) серы от их количества в шихте.

Принимается для рассматриваемого примера количество углерода, переходящее в агломерат, 0,8% и серы 40%.

Таким образом, в агломерат перейдет:

```
-углерода 3.51 \cdot 0.8/100 = 0.03 кг;
```

-серы
$$0.051 \cdot 40/100 = 0.020$$
 кг.

Условно полагается, что вся сера в офлюсованном агломерате связана в серный ангидрит SO_3 и находится в агломерате в виде $CaSO_4$. Тогда в агломерате содержится SO_3 : $0,020 \cdot 80/32 = 0,05$ кг.

Количество FeO и Fe_2O_3 в агломерате не сохраняется таким, каким оно было в рудах до спекания. Агломерат из магнетитовых руд, например, имеет меньшее содержание FeO по сравнению с рудной, из гематитовых — большее.

Степень окисления агломерата применительно к выполняемым расчетам удобно характеризовать отношением $Fe_{oбщ}$: Fe^{2+} , которое для агломерата из магнетитовых руд находиться в пределах 4,0-6,0; гематитовых 5,0-8,0; бурых железняков 3,0-4,0. Это отношение не остается постоянным, а изменяется в зависимости от содержания углерода в шихте, богатства агломерата, скорости спекания и т.д.

По практическим данным содержание закиси железа в агломерате из магнетитовых руд составляет 12-18, гематитовых 8-12, бурых железняков 17-22% [1].

В рассматриваемом случае спекаются магнетитовые руды, поэтому отношение $Fe_{\text{общ}}$: Fe^{2+} принимается равным 6,0.

В агломерате будет железа:

- двухвалентного Fe^{2+} : 55,68/6,0 = 9,28 кг;
- трехвалентного Fe^{3+} : $Fe_{\text{общ}} Fe^{2+} = 55,68 9,28 = 46,4$ кг.

В агломерате содержится:

- FeO: $9.28 \cdot 72/56 = 11.93 \text{ KT}$;
- Fe_2O_3 : $46,4 \cdot 160/112 = 66,28$ кг.

Таблица 2.7 - Количество твердых материалов, поступающих на спекание, и компонентов, переходящих в агломерат и газ, кг

	Briting Color	***************************************	**	** **	Возпо	Поможе		Поможо
	гудная смесь	WINOC	JUJIA KUKCA	NORCHR	DCCI 0	переходит в		переходит в
Компоненты		Расход с	сухого		ШИХТОИ ВНОСИТСЯ	агломерат	агломерата,%	ra3
	06	5,77	0,64	4,27				
Fe	61,82/55,64*	0,39/0,02*	3,59/0,023	-	55,68	\$5,68*	59,1*	1
Mn	0,58/0,52*	ı	ı		0,52	0,52*	0,55*	
Ь	0,379/0,341*	0,068/0,004*	$0,24/0,0015^*$	-	0,35	0,35*	0,37*	1
S	0,031/0,028*	0,048/0,003*	ı	0,52/0,020	0,051	0,020*	0,021*	0,031
C	ı	1	ı	82,11/3,51	3,51	0,03	0,031	3,48
SiO_2	4,93/4,44	1,48/0,09	50,66/0,32	-	4,85	4,85	5,47	ı
Al_2O_3	2,81/2,53	0,49/0,03	28,56/0,18	-	2,74	2,74	2,92	1
CaO	0,74/0,67	51,46/2,97	9,05/0,06	-	3,7	2,5	3,93	1
MgO	3,22/2,89	3,46/0,20	7,6/0,05	-	3,14	3,14	3,33	1
FeO	21,25/19,13	ı	1	-	19,13	11,93	12,66	ı
$\mathrm{Fe}_2\mathrm{O}_3$	64,79/58,31	0,56/0,03	-	-	58,34	82'99	70,35	ı
FeS_2	0,054/0,049	ı	ı		0,049	ı	ı	1
SO_3	0,005/0,0045	0,119/0,007	-	-	0,012	50,0	0,051	1
MnO	0,75/0,68	ı	-	-	0,68	89,0	0,72	
P_2O_5	0,87/0,78	0,158/0,009	0,55/0,004	-	0,793	0,793	0,84	1
П.п.п	0,6/0,54	42,26/2,44	-	$2,48^{***}/0,11$	3,09	-	-	3,09
Итого	- /90,02	- /5,776	- /0,637	- /3,64	100	94,22	100	6,601
* The region of the second of	BOHOOM CALCAL COLO	S TO OTTOMO OTTOMA CAN	***************************************	OHALE E BOROGERA	2			

^{*} При подсчете «Итого» исключается из числа слагаемых, так как учитывается в виде соединений.

^{**} В числителе %, в знаменателе кг.

^{***}Сумма содержаний в коксе $\mathrm{V^c}$, $\mathrm{N_2^c}$

После заполнения балансовой таблицы 2.7 необходимо проверить правильность расчета шихты по содержанию в ней углерода и соответствие полученного в агломерате содержания FeO типу спекаемой руды:

- 1) в шихте содержится углерода $3,51/100 \cdot 100 = 3,51\%$, что соответствует принятому в расчете значению.
- 2) в агломерате находится 12,66% FeO (см. графу «Состав агломерата, %» таблицы 2.7), что согласуется с практическими данными при спекании магнетитовых руд.

2.5.3 Определение направленности процесса агломерации

Процесс агломерации в конечном итоге по отношению к железу может быть восстановительным и окислительным. В результате окислительного процесса количество кислорода, связанного в оксиды железа, повышается, а восстановительного - понижается.

При окислительном процессе появляется дополнительный источник тепла -повышение степени окисленности железа, при восстановительном — дополнительный потребитель тепла — диссоциация окислов железа.

С целью определения направленности процесса агломерации составляется баланс по железу и кислороду окислов железа, представленный в таблице 2.8. Баланс составляется на основании данных таблицы 2.7.

Таблица 2.8 - Ба.	панс по железу и кислороду окисл	ов железа, кг
Соотинации	Солоринетод в иниципа	Солович

Соединение	Содержи	ится в ших	хте	Содержится в агломерате					
железа	Соединения	Fe	O_2	Соединения	Fe	O_2			
FeO	19,13	14,87	4,25	11,93	9,28	2,65			
Fe ₂ O ₃	58,34	40,84	17,50	66,28	46,39	19,88			
FeS ₂	0,049	0,02	-	-	-	-			
Fe*	0,024	0,024	-	-	-	-			
Итого	-	55,75	21,75	-	55,68	22,53			
Примечание - *	Примечание - * Из золы коксика								

При составлении таблицы 2.8 необходимо иметь в виду, что количество железа в шихте и агломерате должно быть одинаковым, так как в процессе агломерации железо полностью переходит в агломерат, и соответствовать данным таблицы 2.7. Невязка баланса железа допускается не более ± 0.1 кг.

Содержание кислорода в окислах железа повысилось на 22,53 - 21,75 = =0,78 кг. Таким образом, по отношению к железу процесс является окислительным, и при спекании будет выделяться дополнительное тепло.

Определяется количество железа, участвующее в образовании Fe₂O₃:

$$46,39 - 40,84 = 5,6 \text{ K}\text{ }$$

Из них:

- а) по реакции 4FeO + O_2 = 2 Fe₂ O_3 14,87 9,28 = 5,59 кг;
- б) по реакции $4\text{Fe} + 3\text{O}_2 = 2 \text{ Fe}_2\text{O}_3$ 5.6 5.59 = 0.01 кг.

2.5.4 Определение состава увлажненной шихты с возвратом на 100 кг сухой шихты без возврата

Возврат является оборотным продуктом агломерационного производства и представляет собой мелкий плохо спеченный агломерат, непригодный для проплавки в доменной печи.

Присутствие возврата в шихте требует дополнительного расхода коксика на его расплавление и флюса на ошлакование вносимой этим коксиком золы.

Содержание возврата в сухой шихте на агломерационных фабриках в настоящее время составляет 25-35%.

Для расчета принимается содержание возврата в сухой шихте 30,0%.

Потребное количество возврата Вз (кг) на 100 кг сухой шихты без возврата определяется по уравнению:

$$B_3 = \Pi_{\rm B} \cdot 100/100 - \Pi_{\rm B} [1 + (\Delta K + \Delta \Phi)], \tag{19}$$

где $\Pi_{\rm B}$ – принятое содержание возврата в сухой шихте, %;

 ΔK , $\Delta \Phi$ — дополнительное количество соответственно коксика и флюса, вводимое в шихту на 1 кг возврата, кг.

Дополнительное количество коксика ΔK (кг) на 1 кг возврата рассчитывается по уравнению:

$$\Delta K = \frac{C_{\text{III}} - C_{\text{a}}}{C_{K} - C_{\text{III}} \cdot (1 + \Phi_{K})},\tag{20}$$

где C_{κ} – содержание нелетучего углерода в коксике, %;

 C_a - содержание углерода в возврате, %;

С_ш – принятое содержание углерода в шихте, %;

 Φ_{κ} – расход флюса на ошлакование золы 1 кг коксика, кг.

Содержание углерода в возврате с целью упрощения расчета условно принимается равным его содержанию в агломерате по таблице 2.5.

Расход флюса на ошлакование золы 1кг коксика определен ранее по уравнению (16) $\Phi_{\rm K}=0{,}149~{\rm kr}.$

Подставив в уравнение (208) значения известных величин, получается:

$$\Delta K = \frac{3.5 - 0.031}{82.11 - 3.5 \cdot (1 + 0.149)} = 0.044 \text{ Kg}.$$

Дополнительное количество флюса $\Delta\Phi$ на 1 кг возврата составит:

$$\Delta \Phi = \Delta K \cdot \Phi_{\kappa} = 0.044 \cdot 0.149 = 0.007 \text{ K}\text{ C}.$$

Расход возврата на 100 кг сухой шихты без возврата по уравнению составит:

$$B_3 = 30 \cdot 100/(100-30[1+(0.044+0.007)]) = 43.81 \text{ K}\text{G}.$$

Проверка соответствия полученного расхода возврата принятому содержанию его в шихте производится по уравнению:

$$\Pi_{\rm B} = \frac{\rm B}{100 + \rm B \cdot (1 + \Delta K + \Delta \Phi)} \cdot 100. \tag{21}$$

Содержание возврата в сухой шихте составит:

$$\Pi_{\text{B}} = \frac{43,81}{100 + 43,81 \cdot (1 + 0,044 + 0,007)} \cdot 100 = 30\%,$$

что соответствует принятому значению.

Дополнительные расходы в связи с введением в шихту возврата составят:

- коксика B₃ · Δ K = 43,81 · 0,044 = 1,93 кг;
- флюса $B_3 \cdot \Delta \Phi = 43.81 \cdot 0.007 = 0.31 \text{ кг.}$

Содержится в сухой шихте с возвратом:

- коксика 4.27 + 1.93 = 6.2 кг;
- флюса 5,77 + 0.31 = 6.08 кг.

Количество и состав сухой и увлажненной шихты с возвратом представлены в таблице 2.9, которая составляется по данным таблицы 2.6 с учетом дополнительных расходов коксика и флюса.

Таблица 2.9 - Количество и состав сухой и увлажненной шихты с возвратом на 100 кг сухой шихты без возврата

			Мат	ериал		
Расход материалов	Рудная смесь	Флюс	Коксик	Возврат	Вода на увлажне- ние	Итого
На 100 кг сухой						
шихты без возврата						
получается сухой						
шихты с возвратом, кг	90,00	6,08	6,2	43,81	-	146,09
%	61,61	4,16	4,24	29,99	-	100,00
Расход влажных						
материалов на шихту						
с возвратом W ^p , %	3,1	1,1	18,0	3,0	-	-
КГ	92,88	6,15	7,56	45,16	-	151,75
Материалы вносят						
влаги, кг	2,88	0,07	1,36	1,35	-	5,66
Состав увлажненной						
шихты с возвратом,						
КГ	92,88	6,15	7,56	45,16	5,32	157,10
%	59,12	3,91	4,81	28,70	3,39	100,00

Расход влажного материала при известном расходе сухого определяется по уравнению:

$$P_{\rm BJ} = \frac{P_{\rm CYX}}{100 - W_{\rm P}} \cdot 100, \tag{22}$$

где $P_{\mbox{\tiny BЛ}}$ и $P_{\mbox{\tiny Cyx}}$ – массы соответственно влажного и сухого материала, кг;

 W^{p} – влажность материала, %.

Расход, например, влажной рудной смеси составляет:

$$\frac{90,00}{100-3,1} \cdot 100 = 92,88 \,\mathrm{kg}.$$

Масса увлажненной шихты с возвратом при принятом ранее содержания в ней влаги 7,0% составит $\frac{146,09}{100-7}\cdot 100 = 157,1$ кг.

В шихте содержится гигроскопической влаги 157,1 - 146,09 = 11,01 кг.

Расход воды на увлажнение шихты определяется по разности между необходимым содержанием влаги в шихте и массой ее, вносимой материалами: 11,01 - 5,66 = 5,32 кг.

2.5.5 Уточнение состава агломерата

Вследствие дополнительных количеств золы коксика и флюса, вносимых в шихту совместно с возвратом, состав агломерата, спеченного из шихты с возвратом, будет отличаться от состава, полученного в балансовой таблице 2.7. Поэтому необходимо пересчитать ранее полученный состав агломерата с учетом всех компонентов, вносимых в агломерат дополнительным коксиком и флюсом.

Количество компонентов, вносимое в агломерат этими материалами, представлено в таблице 2.10.

Таблица 2.10 - Количество компонентов, вносимых в агломерат дополнительным расходом коксика и флюса, кг

		in entrement		711 0 11111 0 111 p 01110	, , , , , , , , , , , , , , , , , , , ,	
Компо-	Флюс**	Зола	Коксик**	Всего		
нент		коксика**		материалами	Переход ком	понентов
	Pa	сход сухого)	вносится,		
	0,31	0,290	1,93	КГ	в агломерат	в газ
Fe	0,39/0,001*	3,81/0,011*	-	0,012*	0,012*	ı
Mn	-	-	-	-	-	-
P	0,068/следы	0,25/0,001*	-	0,001*	0,001*	-
S	0,048/следы	-	0,52/0,01	0,01*	0,004*	0,006
С	_	-	82,11/1,58	1,58	0,013	1,567
SiO_2	1,48/0,005	53,69/0,155	-	0,16	0,16	-
Al_2O_3	0,49/0,002	30,27/0,088	-	0,09	0,09	-
CaO	51,46/0,16	9,59/0,028	-	0,188	0,188	-
MgO	3,46/0,01	8,05/0,02	-	0,03	0,03	-
FeO	-	-	-	-	0,003	-
Fe ₂ O ₃	0,56/0,002	-	-	0,002	0,014	-
P_2O_5	0,158/следы	0,581/0,002	-	0,002	0,002	-
SO ₃	0,119/следы	-	-	следы	0,01	-
П.п.п	42,26/0,13	-	2,48/0,05	0,18	-	0,18
Итого	- /0,309	-/0,30	-/1,64	2,232	0,51	1,753

Примечания:

^{*} При подсчете «Итого» исключается из числа слагаемых, так как учитывается в виде соединений. При подсчете «Итого» графы «Всего материалами вносится, кг» S и Fe, содержащиеся в коксике и его золе, включается в число слагаемых;

^{**} В числителе %, в знаменателе кг.

При составлении таблицы 2.10 количества серы и углерода, переходящие в агломерат из дополнительных коксика и флюса, подсчитываются на основании ранее принятого перехода в агломерат серы 40% и углерода 0,8%.

Предполагается, что железо флюса и золы коксика переходит в агломерат в виде окислов, при этом отношение $Fe_{\text{общ}}: Fe^{2+}$ будет равно ранее принятой величине (6,0), а сера, переходящая в агломерат из этих материалов, образует SO_3

Пересчитанный состав агломерата с учетом данных таблицы 2.10 представлен в таблице 2.11.

Таблица 2.11 - Количество компонентов, переходящих в агломерат, с учетом

содержания возврата в шихте

	1	ломерат	Дополнительный		
		-	коксик и флюс	Всего	Состав
Volume	<u> </u>	возврат	•	материалами	
Компо-		Расход су		вносится в	агломерата,
нент		133,34	2,14	агломерат, кг	%
	%	КΓ	КГ	arromepar, m	
Fe	59,1	81,58*	0,012*	81,59*	58,91*
Mn	0,55	0,76*	-	0,76*	0,55*
P	0,37	0,141*	0,001*	0,142*	0,10*
S	0,021	0,029*	0,004*	0,033*	0,24*
С	0,031	0,043	0,013	0,056	0,04
SiO_2	5,17	7,14	0,16	7,3	5,27
Al_2O_3	2,92	4,03	0,09	4,12	2,97
CaO	3,93	5,42	0,188	5,608	4,05
MgO	3,33	4,60	0,03	4,63	3,34
FeO	12,66	17,47	0,003	17,47	12,6
Fe_2O_3	70,35	97,10	0,014	97,11	70,12
MnO	0,72	1,00	-	1,00	0,72
P_2O_5	0,84	1,12	0,002	1,12	0,81
SO_3	0,051	0,07	0,01	0,08	0,06
Итого	-	137,99	0,51	138,5	100,00

Примечание - * При подсчете «Итого» исключается из числа слагаемых, так как учитывается в виде соединений

В агломерате будет железа:

-двухвалентного Fe^{2+} 0,012/6,0 = 0,002 кг;

-трехвалентного $Fe^{3+} = Fe_{\text{общ}} - Fe^{2+} = 0,012 - 0,002 = 0,01$ кг.

В агломерате содержится:

- FeO $0.002 \cdot 72/56 = 0.003 \text{ KT}$;

- Fe_2O_3 0,01 · 160/112 = 0,014 кг.

В агломерат перейдет:

- углерода $1,58 \cdot 0,8/100 = 0,013$ кг;

- серы $0.01 \cdot 40/100 = 0.004$ кг.

В агломерате содержится $SO_3 \quad 0.04 \cdot 80/52 = 0.01$ кг.

При составлении таблицы 2.11 расход сухого (кг) в графе «Агломерат + возврат» подсчитывается суммированием количества агломерата, получающегося из 100 кг сухой шихты без возврата (94,22кг, см. таблицу 2.7) с

количеством возврата, вводимого на 100 кг сухой шихты без возврата (43,81кг, см. таблицу 2.9). При этом химический состав возврата принимается таким же, как и агломерата, по таблице 2.7.

Основность агломерата CaO : $SiO_2 = 4,05 : 5,27 = 0,80$.

Согласно таблицам 2.9 и 2.11 из 146,09 кг сухой шихты с возвратом получается 138,5 кг агломерата.

Относительный выход агломерата составит:

а) из сухой шихты с возвратом

$$\frac{138,5}{146.09} \cdot 100 = 94,80\%$$
 или 0,948;

б) из увлажненной шихты с возвратом:

$$\frac{138,5}{157,1}$$
 · 100 = 88,16% или 0,882.

Принимается - сколько в шихту вводится возврата, столько его и получается.

Относительный выход из аглоспека:

а) возврата
$$\frac{43,81}{138,5} \cdot 100 = 31,63\%$$
 или $0,316$.

б) годного агломерата 100-31,63=68,37% или 0,684.

Относительный выход годного агломерата от массы шихты:

- сухой $94,80 \cdot 68,37/100 = 64,81\%$ или 0,648;
- влажной $88,16 \cdot 68,37/100 = 60,27\%$ или 0,603.

Расход воды на увлажнение шихты: 5,32/138,5 = 0,04 кг/кг агломерата.

2.6 Расчеты горения в агломерационном процессе

2.6.1 Расчеты горения газа для зажигания шихты

Для зажигания шихты главным образом используют доменный, коксовый и природный газ. Когда агломерационная фабрика расположена на площадке металлургического завода или вблизи нее, чаще используют смесь доменного и коксового газов.

Соотношение газов в смеси определяется из расчета получения газа с теплотворной способностью $10500-15000 \text{ кДж/м}^3$.

Принимается теплотворная способность газовой смеси 12600 кДж/м³.

Состав смеси доменного и коксового газов для расчета (общий для всех вариантов) представлен в таблице 2.12.

Таблица 2.12 - Средневзвешенный состав газовой смеси, %

CO_2	CO	CH ₄	H_2	O_2	N_2	\sum
6,74	11,67	17,09	44,71	0,59	19,20	100

Для определения массы газовой смеси по ее объему в последующих расчетах необходимо знание ее плотности, $\kappa \Gamma/m^3$:

$$\gamma_{\rm cm} = 1/22, 4 \cdot 100 \sum K_i M_i , \qquad (23)$$

где 22,4 – объем килограмм-молекулы газа, м³;

 $K_i \ M_i$ — соответственно содержание і-го компонента в смеси (%) и его молекулярная масса (кг).

Плотность газовой смеси:

 $\gamma_{\text{cm}} = (1/22.4) \cdot 100 \cdot (6.74 + 11.67 \cdot 28 + 17.09 \cdot 16 + 44.71 \cdot 2 + 0.59 \cdot 32 + 19.20 \cdot 28) = 0.689 \text{ kg/m}^3.$

Определение расхода газа на зажигание шихты

Расход газа на зажигание шихты определяется по потребности в тепле на него и теплотворной способности газовой смеси. Расход тепла на зажигание зависит от минералогического типа спекаемой руды, крупности компонентов шихты, ее влажности, содержания в ней флюса, интенсивности процесса спекания, высоты спекаемого слоя, конструкции зажигательного горна и изменяется в широких пределах от 17000 до 50000 кДж на 100 кг аглоспека.

Принимается расход тепла на зажигание 21000 кДж на 100 кг аглоспека. Расход газа на зажигание при этом составит:

 $21000/12600 = 1,66 \text{ м}^3/100 \text{ кг аглоспека или } 1,66 \cdot 0,689 = 1,144 \text{ кг/}100 \text{ кг аглоспека.}$

Расход газа на 100 кг сухой шихты с возвратом составит:

 $1,66 \cdot 0,94=1,57 \text{ м}^3$ или $1,144 \cdot 0,94=1,085$ кг,

где 0,94 – относительный выход агломерата из сухой шихты с возвратом.

При зажигании используется атмосферный воздух естественной влажности, который подается в горелки зажигательного горна специальным вентилятором. Принимается, что в воздухе содержится, %: O_2 - 20.8; O_2 - 20.8; O_3 - 1.0 и O_3 - 1.0 и O_3 - 1.0 и O_4 - 0.0 и O

Температура зажигания на отечественных агломерационных фабриках составляет 1150-1300 °C. В большинстве случаев она выше 1200 °C.

Принимается температура зажигания t₃ равная 1250 °C.

При зажигании необходимо создавать условия для горения топлива шихты за счет окисления его кислородом продуктов горения, образующихся в зажигательном горне. Полагают, что содержание кислорода в продуктах горения, поступающих в слой шихты при ее зажигании, должно быть не менее 6-8%. Количество кислорода в продуктах горения газовой смеси зависит от коэффициента избытка воздуха при зажигании.

Обычно коэффициент избытка воздуха при зажигании составляет $\alpha = 1,5$ -2,5. Принимается $\alpha = 1,7$.

Материальный баланс горения 100 м³ газовой смеси при зажигании шихты представлен в таблице 2.13, при составлении которой необходимо иметь в виду следующее. Графа «Количество компонента» заполняется по данным средневзвешенного состава газовой смеси.

В связи с тем, что берется 100 м^3 газовой смеси, содержание в ней компонентов в м^3 точно соответствует процентному содержанию их в смеси. При подсчете теоретической потребности кислорода на сжигание 100 м^3

газовой смеси по данным графы «Требуется кислорода», из количества кислорода, потребного для сгорания CO, H_2 , CH_4 , содержащихся в $100\,\mathrm{m}^3$ газовой смеси, необходимо вычесть количество кислорода, находящегося в ней, так как он будет участвовать в процессах горения. Объемы азота и водяного пара, переходящие в продукты горения из воздуха, определяются по его расходу и содержанию в нем этих компонентов. Количество кислорода воздуха, переходящее в продукты горения, определяются по разности между содержанием его в воздухе и потребностью в нем для процессов горения.

Таблица 2.13 - Материальный баланс горения 100 м³ газовой смеси при зажигании шихты, м³

	Кол-во				П	ереходит	B	
Компо-	компо-	Реакция горения	Требуется		прод	укты гор	ения	
нент	нента	компонента	кислорода	CO_2	H ₂ O	O_2	N_2	Итого
					пар			
CO ₂	6,74	-	-	6,74	-	-	-	6,74
СО	11,67	2CO+O ₂ =2CO ₂	5,83	11,67	-	-	-	11,67
CH ₄	17,09	CH ₄ +2O ₂ =CO ₂ +2H ₂ O	34,18	17,09	34,18	-	-	51,27
H ₂	44,71	2H ₂ +O ₂ =2H ₂ O	22,35	-	44,71	-	-	44,71
O_2	0,59	-	-0,59	-	-	-	-	-
N ₂	19,20	-	-	-	-	ı	19,20	19,20
	ть в О2 при		61,77	ı	-	ı	-	-
Из воздуха	а (296,97 м ³) при α =1,0	-	-	2,97	-	232,23	235,20
Избыточн	ым воздухо	м вносится	-	-	2,09	43,46	163,39	208,94
Всего прод	дуктов горе		-	35,30	83,95	43,46	414,82	577,73
Состав пре	одуктов гор	ения, %	-	-	14,53	7,52	71,80	100

Теоретическая потребность в воздухе (α =1,0) на сжигание 100 м³ газовой смеси определена по уравнению:

$$\frac{61,77}{20,8} \cdot 100 = 296,97 \text{ m}^3,$$

где 61,77 – теоретическая потребность в кислороде на сжигание 100 м^3 газовой смеси, м^3 ;

20,8 — содержание кислорода в воздухе, %.

На зажигание $100~\rm kr$ сухой шихты с возвратом, как было определено ранее, расходуется $1,57~\rm m^3$ газовой смеси. При этом образуется, в соответствии с таблицей 2.13, продуктов горения:

$$(577,73/100) \cdot 1,57=9,07 \text{ m}^3,$$

которые содержат, м³: CO_2 - 0,56; $H_2O_{\text{пар}}$ - 1,31; O_2 - 0,68 и N_2 - 6,5.

Расходуется воздуха на зажигание 100 кг сухой шихты с возвратом:

$$\frac{296,97+208,94}{100} \cdot 1,57 = 7,94 \text{ m}^3.$$

2.6.2 Расчеты горения углерода и серы на 100 кг сухой шихты с возвратом

Работа агломерационных фабрик показывает, что 75-80% углерода шихты при ее спекании окисляется в CO_2 и 20-25% в CO, а сера сгорает в SO_2 . Принимается, что до CO_2 окисляется 80 и до CO_2 0% углерода, сгорающего в процессе агломерации.

На 100 кг шихты с возвратом сгорает (см. таблицы 2.7, 2.10):

Углерода
$$\frac{3,48+1,567}{146,05} \cdot 100 = 3,46$$
 кг;
Серы $\frac{0,031+0,006}{146,05} \cdot 100 = 0,025$ кг.

Углерода окисляется: до CO
$$3,46 \cdot 0,2 = 0,692$$
 кг; до CO₂ $3,46 \cdot 0,8 = 2,768$ кг.

Коэффициент избытка воздуха в процессах горения при спекании шихты на агломерационной машине с учетом вредных подсосов, т.е. поступлений воздуха в газовый тракт помимо спекаемого слоя шихты ввиду разного рода неплотностей, составляет 3,0-4,5. Принимается коэффициент избытка воздуха $\alpha = 0.4$.

Материальный баланс горения углерода и серы шихты представлен в таблице 2.14.

Таблица 2.14 - Материальный баланс горения углерода и серы на 100 кг сухой шихты с возвратом, м³

	1	1	, 							
Эле-	Кол-	Реакция	Потребность		Пер	реходит	в проду	кты гор	ения	
мент	во,	горения	в O ₂	CO ₂	CO	SO_2	O_2	H ₂ O	N_2	Итого
	КГ			_		_	_	пар	_	
С	2,768	$C+O_2=CO_2$	5,17	5,17	-	-	-	-	-	5,17
С	0,692	2C+O ₂ =2CO	1,29	-	2,58	-	-	-	-	2,62
S	0,025	$S+O_2=SO_2$	0,02	-	-	0,02	-	-	-	0,02
Потре	бность в (О ₂ при α =1,0	6,48	-	-	-	-	-	-	-
Воздух	х вносит	O_2 при α = 4,0	25,92	-	-	-	-	-	-	-
Из воз	духа		-	-	-	-	19,44	1,25	97,5	118,19
Образ	уется про	дуктов гор.	-	5,17	2,58	0,02	19,44	1,25	97,5	125,96

Теоретическая потребность в кислороде на горение углерода и серы определяется по нижеприведенным соотношениям.

Определяется потребное количество кислорода на окисление углерода:

- до $CO_2(22,4/12) \cdot 2,768 = 5,17 \text{ м}^3$;
- до CO $(22,4/2/12) \cdot 0,692 = 1,29 \text{ м}^3$.

Требуется кислорода на горение серы $(22,4/32) \cdot 0,025 = 0,02 \text{ м}^3$.

Таким образом, теоретическая потребность в кислороде ($\alpha = 1,0$) на горение углерода и серы составит $5,17+1,29+0,02=6,48 \text{ м}^3$.

Воздухом вносится кислорода, м^3 : 6,48 · 4 = 25,92 (с учетом избытка α = =4,0). Это количество кислорода поступает с (25,92/20,8) · 100 = 124,62 м^3 воздуха.

Количество кислорода, переходящее в продукты горения, определяется по разности между количеством кислорода, вносимым воздухом и расходуемым на горение углерода, серы и окисление железа, если последнее имеет место.

В продукты горения перейдет кислорода: $25,92 - 6,48 = 19,44 \text{ м}^3$.

2.6.3 Состав и количество сухих продуктов горения на 100 кг сухой шихты с возвратом

Состав и количество отсасываемых эксгаустером продуктов горения определяется составом и количеством газа, образующегося при сгорании газовой смеси зажигания, горения углерода и серы, диссоциации карбонатов и не учитываемыми нами летучими коксика.

Вследствие разложения флюса в продукты горения переходит ${\rm CO_2}$ за счет реакций:

$$CaCO_3 = CaO + CO_2$$
;
 $MgCO_3 = MgO + CO_2$.

Согласно данным таблиц 2.7 и 2.10 на 100 кг сухой шихты с возвратом флюс вносит:

CaO
$$((2,97+0,16)/146,05) \cdot 100 = 2,14$$
 кг;

MgO
$$((0.2+0.01)/146.05) \cdot 100 = 0.144 \text{ K}\text{ }\Gamma.$$

В продукты горения перейдет СО₂ флюса в количестве:

$$22.4 \cdot (2.14/56 + 0.144/40) = 0.94 \text{ m}^3.$$

При наличии в шихте сидеритовых руд продукты горения дополнительно обогащаются углекислотой за счет диссоциации:

$$FeCO_3 = FeO + CO_2$$
.

Количество и состав продуктов горения, отсасываемых эксгаустером, представлены в таблице 2.15.

Таблица 2.15 - Количество и состав вносимых продуктов горения. м³

Процесс	CO_2	CO	SO_2	O_2	N_2	Всего
Зажигание шихты	0,56	-	-	0,68	6,50	7,74
Горение C и S	5,17	2,58	0,02	19,44	97,50	124,71
Разложение флюса	0,94	-	-	-	-	0,94
Итого	6,67	2,58	0,02	20,12	104,00	133,39
Состав продуктов						
горения, %	5,00	1,93	0,015	15,08	77,97	100,0

Плотность сухих продуктов горения согласно уравнению (23):

$$\gamma_{cr} = \frac{1}{22,4 \cdot 100} (5,00 \cdot 44 + 1,93 \cdot 28 + 0,015 \cdot 64 + 15,08 \cdot 32 + 77,97 \cdot 28) = 1,31 \text{ kg/m}^3$$

Масса сухих продуктов горения на 100 кг сухой шихты с возвратом равна:

$$1,31 \cdot 133,39 = 174,35 \text{ K}\text{G}.$$

2.6.4 Количество влаги, переходящей в продукты горения на 100 кг сухой шихты с возвратом

В продукты горения переходит влаги:

- гидратной из рудной смеси (см. таблицу 2.7, п.п.п):

$$(0.54/146.05) \cdot 100 = 0.37 \text{ KT};$$

- гигроскопической из увлажненной шихты:

$$(11,01/146,05) \cdot 100 = 7,54 \text{ KT};$$

- вносимой воздухом и образующейся при зажигании шихты (см. таблицу 2.14):

$$\frac{1,31+1,25}{22,4} \cdot 18 = 2,06$$
 Kg.

Всего переходит влаги в продукты горения: 0.37 + 7.54 + 2.06 = 9.97 кг.

В продуктах горения содержится пара: $(9,97/18) \cdot 22,4 = 12,41 \text{ м}^3$.

На спекание 100 кг сухой шихты с возвратом расходуется воздуха при зажигании 8,04 м³ и на горение углерода и серы 124,62 м³.

Всего на спекание расходуется воздуха $8,04 + 124,62 = 132,66 \text{ м}^3$.

Плотность воздуха согласно уравнению (23) составляет:

$$\gamma_{\text{b}} = \frac{1}{22.4 \cdot 100} \cdot (20.8 \cdot 32 + 1.0 \cdot 1878.2 \cdot 28) = 1.283 \quad \text{kg/m}^3.$$

Масса расходуемого воздуха равна $1,283 \cdot 132,66 = 170,20$ кг.

2.7 Материальный баланс агломерационного процесса

С целью проверки правильности выполненных выше расчетов составляется материальный баланс, который представлен в таблице 2.16.

Подсчет величин для графы «кг/100 кг агломерата» производится делением величин графы «кг/100 кг шихты» на относительный выход агломерата из сухой шихты с возвратом. Например, гигроскопической влаги на 100 кг агломерата вносится 7,54:0,948=7,95 кг.

Таблица 2.16 - Материальный баланс агломерационного процесса

	Приход			Расход	
Статьи	кг/100 кг	кг/100 кг	Статьи	кг/100 кг	кг/100 кг
	шихты	агломерата		шихты	агломерата
Шихта	100,00	105,48	Агломерат	94,80	100,00
сухая					
Гигроскопичес	7,54	7,95	Сухие	174,35	183,91
кая влага	7,54	1,93	продукты	174,55	165,91
			горения		
Газ на	1,085	1,14	Влага	9,97	10,52
зажигание	1,005	1,17	продуктов	7,77	10,32
			горения		
Воздух	170,20	179,53	-	_	
на зажигание и	170,20	179,33		_	-
спекание					
Итого	278,825	294,1	Итого	279,12	294,4

Невязка баланса $\frac{278,825-279,12}{278,825} \cdot 100 = 0,1 \%$ находится в допустимых пределах (0,5%), что свидетельствует о правильности выполненных расчетов.

3 Определение расхода материалов на 100 кг годного агломерата

Из 146,05 кг шихты с возвратом получается годного агломерата: $146.05 \cdot 0.648 = 94.60$ кг.

Отсюда, исходя из данных таблицы 2.8, на 100 кг годного агломерата будет расходоваться:

- рудной смеси $(90,00/94,60) \cdot 100 = 95,12$ кг;
- флюса $(5,77/94,60) \cdot 100 = 6,10$ кг;
- коксика $(4,27/94,60) \cdot 100 = 4,51$ кг.

Расход материалов представлен в таблице 3.1.

Таблица 3.1- Расход сухих и влажных материалов на 100 кг годного агломерата. кг

	1 /	T	
Материал	Расход сухого*	Расход в	отонжала
		Влажность, %	Масса, кг
Железная руда	$95,12 \cdot 0,12 = 11,41$	2,3	11,68
Концентрат 1	$95,12 \cdot 0,45 = 42,8$	2,3	43,81
Концентрат 2	$95,12 \cdot 0,385 = 36,62$	4,3	38,27
Окалина	95,12 · 0,045 = 4,28	3,0	4,40
Известняк	$6,10 \cdot 1,0 = 6,10$	1,1	6,17
Коксик	4,51	18,0	4,12

Примечание - *Множители – относительное содержание материала в рудной смеси (в соответствии с заданием) и во флюсе. Расход влажного материала определяют по уравнению (22)

Список рекомендуемой литературы

- 1 Коротич, В.И., Агломерация рудных материалов. Научное издание. [Текст]/В.И. Коротич, Ю.А. Фролов, Г.Н. Бездежский Екатеринбург: УГТУ-УПИ, 2003.-400 с.
- 2 Доменное производство: Справочное издание. В 2-х т. Т.1. Подготовка руд и доменный процесс / Под ред. Вегмана Е.Ф.—М.: Металлургия, 1989. 496 с.
- 3 Коротич, В.И. Основы теории и технологии подготовки сырья к доменной плавке. [Текст]/В.И Коротич М.: Металлургия, 1978. 208 с.
- 4 Остроухов, М.Я., Справочник мастера-доменщика. [Текст]/М.Я. Остроухов, Л.Я. Шпарбер. М.: Металлургия, 1977. 304 с.
- 5 Неясов, А.Г. Расчеты шихты, материального и теплового балансов агломерационного процесса. Учебное пособие. [Текст]/А.Г. Неясов Свердловск: Изд-во УПИ им. С.М.Кирова, 1973. 68с.

Приложение А

Варианты заданий

3.0	Барианты з		
$\mathcal{N}_{\underline{0}}$	Рудная часть шихты	Расход кокса,	Расход
варианта	т уднал тасть шингы	кг/т	металлодобавок, кг/т
1	80% Оленегорского конц. + 20% Оленегорской руды	420	5
2	80% Костомукшского конц. + 20% Ковдорской руды	430	6
3	80% Костомукшского концентрата + 20% Костомукшской руды	440	7
4	50% Лебединской аглоруды + 50% конц. КМА-руда	450	8
5	90% конц. КМА-руда + 10% руды ОФ№2 (КМА-руда)	460	9
6	60% Стойленской аглоруды + 40% Михайловской аглоруды	415	10
7	80% Стойленской аглоруды + 20% Михайловского конц.	425	11
8	90% Лебединского конц. + 10% руды ОФ№1 (КМА-руда)	435	12
9	10% Лебединского жел. кварцита + 90% Лебединского конц.	445	13
10	70% Михайловской аглоруды + 30% Стойленского конц.	455	14
11	50% Яковслевской руды + 50% Михайловского конц.	420	15
12	50% Криворожской руды + 50%Яковлевской руды	430	5
13	40% Криворожской магн. руды + 60% Михайловского конц.	440	6
14	30% Серовской руды + 70% конц. ССГОК	450	7
15	25% Лебяжинского магн. железняка + 75% конц. ССГОК	460	8
16	40% Соколовская руда + 60% Лисаковский конц	415	9
17	10% Атасуйской руды + 90% Качканарского конц.	425	10
18	30% Соколовской руды + 70% Качканарского конц.	435	11
19	40% Михайловского конц. +60% Лебединского конц.	445	12
20	30% Стойленского конц. + 70% Костомукшского конц.	455	13
21	45% Ковдорской руды + 55% Михайловского конц.	465	14
22	70% Яковслевской руды + 30% конц. КМА-руда	405	15
23	40% Михайловского конц. +60% Лебединского конц.	400	8

Продолжение приложения А

Варианты заданий

No॒	Рудная часть шихты	Расход кокса,	Расход
варианта		$\kappa\Gamma/ au$	металлодобавок, кг/т
24	20% Атасуйской руды + 80% Лисаковского конц.	415	7
25	35% Яковлевской руды + 65% конц. ССГОК	475	11
26	25% Новокиевской руды + 75% Стойленской аглоруды	425	9
27	30% Стойленского конц. + 70% Костомукшского конц.	460	6
28	45% Ковдорской руды + 55% Михайловского конц.	470	8
29	70% Яковслевской руды + 30% конц. КМА-руда	435	10
30	90% Стойленской аглоруды + 10% Бакальского бурого железняка	440	12

Приложение Б Химический состав компонентов агломерационных шихт

Месторождение	Fе _{общ} Fе _{мет}	емет FeO		Fe ₂ O ₃ MnO		SiO ₂ Al ₂ O ₃ CaO	CaO	MgO Cı	CuO FeS	SS SO ₃	$\mathbf{P}_3 \mid \mathbf{P}_2\mathbf{O}_5$		$TiO_2 V_2O_5$	oin ;	Сг ₂ О ₃ п.п.п.		ZnO	Σ E	Н2Огидр
Оленегорская руда	29,88	10,7	,7 30,8	8 0,94	49,3	2,64	2,84	2,55		0,090	90 0,054	54 0,1						100	
Оленегорский концентрат	60,15	20,20	20 63,48	60,00	14,30	0,58	65,0	0,41		0,060	50 0,048	84				0,24		100	
Ковдорская руда	24,51	10,50	50 23,3	23,35 12,55 14,53	5 14,53	3,27	17,70 14,90	14,90		0,300	00 2,900	00						100	
Костомукшская руда	31,10	15,33	33 27,39	6	49,35	2,17	1,32	1,81		0,46	0,460 0,120	07				2,05		100	
Костомукшский концентрат	62,91	20,10	10 67,53	.3	8,46	2,59	0,74	0,18		0,320	20 0,082	32						100	
Комбинат КМА- руда ОФ № 1	33,48	14,04	04 32,22	22 0,22	43,26	1,36	2,01	2,78		0,120	20 0,074	74				3,92		100	
Комбинат КМА- руда ОФ № 2	31,74	15,33	33 28,30	0,22	0,22 44,97	2,48	2,07	3,02		0,12	0,140 0,065	55				3,40		100	
Комбинат КМА- руда концентрат	66,21	27,30	30 64,25	5:	7,40	0,26	0,19	0,45		0,081	81 0,068	98						100	
Лебединская аглоруда	55,73	13,	13,38 64,75	75 0,13	11,08	2,91	1,60	1,40		0,076	76 0,084	34				4,59		100	
Лебединский железистый кварцит	35,60	13,10	10 36,30	0:	45,26	1,86	1,78	1,40		0,135	35 0,169	69						100	
Лебединский концентрат	68,77	28,68	68 66,37	2:	4,07	0,21	0,25	0,33		0,034	34 0,057	57						100	
Стойленская аглоруда	51,96	5,14	4 68,52	52 0,23	13,40	5,30	1,04	0,51		0,060	50 0,052	52				5,75		100	
Стойленский концентрат	99,19	28,30	30 65,20	0.	5,68	0,17	0,16	0,41		0,0	0,046 0,038	38						100	
Михайловская аглоруда	57,33	5,35	35 75,96	90'0 90	0,06 10,42	1,08	1,69	0,32		0,360	90 0,060	90				4,70		100	

Продолжение приложения Б Химический состав компонентов агломерационных шихт

Месторождение	Fе _{общ}	$\mathrm{Fe}_{\mathrm{Mer}}$	FeO	Fe ₂ O ₃ MnO	MnO	SiO_2	Al_2O_3	CaO	CaO MgO CuO		FeS	SO_3	P_2O_5	TiO2	V_2O_5	NiO ($TiO_2 V_2O_5 NiO Cr_2O_3 \Pi.\Pi.\Pi.$		ZnO	Σ H ₂	$H_2O_{\text{гидр}}$
Михайловский концентрат			26,80	64,07	0,02	7,12	0,10	0,24	0,35)	0,240	0,050	0,01				1,00	1	100	
Криворожская руда	56,71		0,80	80,12	0,04	14,87	1,31	0,80	0,05)	0,040	0,080	90,0				1,83	1	100	
Криворожская магнетитовая руда	55,87	·	21,25	56,20		15,80	86,0	1,35	4,30)	0,085	0,030						1	100	
Серовская руда	54,45		16,00	60,00	0,40	12,35	5,00	3,00	1,00)	0,500	0,150				0,10	1,50	1	100	
Яковлевская руда	60,41		1,50	84,63		5,10	2,40	3,40	0,60)	0,040	0,080					2,25	1	100	
Лебяжинский магн. железняк	47,35		19,15	46,36	0,62	13,48	5,37	5,91	4,56	0,10)	0,210	0,520				` '	3,66	0,06	100	
Бакальский сидерит	34,18		28,86	16,75	1,50	6,88	2,59	2,96	8,92			0,400	0,070				<u>(u)</u>	31,07		100	
Бакальский бурый железняк	50,15		1,56	16,69	1,63	10,44	3,56	0,51	1,21)	0,070 (0,080				1	11,03	1	100	8,40
Соколовская руда	57,42		22,60	56,91	0,14	10,55	2,05	3,69	2,74	0,22	0,25 0	0,180	0,195	0,34	0,10		0,02)	0,02	100	
Атасуйская руда	50,93		8,03	63,83	0,48	15,11	3,64	1,89	0,44			1,720	0,140			1,16		3,56		100	
Качканарский концентрат	63,78		27,63	27,63 60,41	0,17	4,17	2,03	1,44	1,37)	0,050 (0,030	2,20	0,50				1	100 7	7,20
Концентрат ССГОКа	64,27	•	26,00	62,91	0,15	3,66	1,09	1,05	0,91)	0,870	0,070	0,30	0,10		0,03	2,86	1	100	8,50
Лисаковский концентрат	58,65		20,00	20,00 63,27	0,30	7,37	5,16	0,60	0,72)	0,050	1,700	0,80)	0,03	100	
Новокиевская руда	36,36		1,64	50,12	0,66	18,00	10,50	1,30	3,07)	0,070 (0,250	0,40	-	89,0	1,83 1	11,48	1	100	9,20
Колошниковая пыль	35,62		9,74	40,06	0,64	9,07	1,76	10,00	2,23)	0,028	0,320	0,15			2	26,00	1	100	9,90
Окалина ОХМК	71,16		69,74	24,15	0,78	2,97	0,83	0,74	0,70)	0,026 0,012	0,012	90,0						100 2	2,40
Сварочный шлак	51,24		48,40	19,40	0,52	30,00	1,20	0,40)	0,040	0,044						1	100	
Чугунная стружка	90,06	0,06			0,31	7,83				, =	1,67 (1,67 0,030 0,156	0,156						1	100	

ШАПОВАЛОВ АЛЕКСЕЙ НИКОЛАЕВИЧ БОЛЬШИНА ЕЛЕНА ПАВЛОВНА

РАСЧЕТ ШИХТЫ И МАТЕРИАЛЬНОГО БАЛАНСА АГЛОМЕРАЦИОННОГО ПРОЦЕССА

Методические указания по выполнению курсовой работы по дисциплине «Металлургические технологии, ч.1» для студентов направления 150400 «Металлургия» для очной формы обучения

Подписано	в печат		
19.02.2014			
Формат 60х90	/ 16	Печать офсетная	Учизд.л. 2,5
Рег.№ 32		Тираж 30 экз.	

Национальный исследовательский технологический университет «МИСиС»

Новотроицкий филиал

462359, Оренбургская обл., г. Новотроицк, ул. Фрунзе, 8.

E-mail: nfmisis@yandex.ru

Контактный тел. 8 (3537) 679729.